Détail du document
Identifiant

doi:10.1007/s10072-022-06157-x...

Auteur
Aiello, Edoardo Nicolò Pain, Debora Radici, Alice Aktipi, Kalliopi Marinou Sideri, Riccardo Appollonio, Ildebrando Mora, Gabriele
Langue
en
Editeur

Springer

Catégorie

Medicine & Public Health

Année

2022

Date de référencement

05/07/2022

Mots clés
amyotrophic lateral sclerosis frontotemporal degeneration cognitive impairment: upper motor ... lower motor neuron neuron scores ecas-total cognition motor phenotypes classical
Métrique

Résumé

Background Amyotrophic lateral sclerosis (ALS) is phenotypically heterogeneous in motor manifestations, and the extent of upper vs. lower motor neuron involvement is a widespread descriptor.

This study aimed to examine cognition across different ALS motor phenotypes.

Methods ALS patients ( N  = 124) were classified as classical ( N  = 66), bulbar ( N  = 13), predominant-upper motor neuron (PUMN; N  = 19), and predominant-lower motor neuron (PLMN; N  = 26) phenotypes.

Cognition was assessed with the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and function with the ALS Functional Rating Scale—Revised (ALSFRS-R).

Revised ALS-FTD consensus criteria were applied for cognitive/behavioral phenotyping.

Results Defective ECAS-total scores were detected in all groups — bulbar: 15.4%, classical: 30.3%, PLMN: 23.1%, and PUMN: 36.8%.

Classical and PUMN ALS patients performed worse than PLMN ones on ECAS-total, ALS-specific, Fluency, and Executive measures.

No other difference was detected.

Worse ASLFRS-R scores correlated with poorer ECAS-total scores in classical ALS patients.

Conclusions Frontotemporal cognitive deficits are more prevalent in PUMN and classical ALS and linked to disease severity in the latter, but occur also in PLMN phenotypes.

Aiello, Edoardo Nicolò,Pain, Debora,Radici, Alice,Aktipi, Kalliopi Marinou,Sideri, Riccardo,Appollonio, Ildebrando,Mora, Gabriele, 2022, Cognition and motor phenotypes in ALS: a retrospective study, Springer

Document

Ouvrir

Partager

Source

Articles recommandés par ES/IODE IA

A comprehensive AI model development framework for consistent Gleason grading
intelligence cancer scanners pai artificial annotation pathologists approach model grading image prostate quality 0 images ai