Document detail
ID

doi:10.1186/s12866-023-03170-8...

Author
Sun, Luyuan Li, Guilong Zhao, Jiao Zhang, Ting Liu, Jia Zhang, Jie
Langue
en
Editor

BioMed Central

Category

Mycology

Year

2024

listing date

1/17/2024

Keywords
core microbiota ... ecosystem multi-functionality tree planting coppice soils results tree maintaining cluster significant soil camphora coppice microbiota planting zone ecosystem core
Metrics

Abstract

Background Cinnamomum camphora (L.) Presl ( C. camphora ) is an evergreen broad-leaved tree cultivated in subtropical China.

The use of C. camphora as clonal cuttings for coppice management has become popular recently.

However, little is known about the relationship between soil core microbiota and ecosystem multi-functionality under tree planting.

Particularly, the effects of soil core microbiota on maintaining ecosystem multi-functionality under C. camphora coppice planting remained unclear.

Materials and methods In this study, we collected soil samples from three points (i.e., the abandoned land, the root zone, and the transition zone) in the C. camphora coppice planting to investigate whether core microbiota influences ecosystem multi-functions.

Results The result showed a significant difference in soil core microbiota community between the abandoned land (AL), root zone (RZ), and transition zone (TZ), and soil ecosystem multi-functionality of core microbiota in RZ had increased significantly (by 230.8%) compared to the AL.

Soil core microbiota played a more significant influence on ecosystem multi-functionality than the non-core microbiota.

Moreover, the co-occurrence network demonstrated that the soil ecosystem network consisted of five major ecological clusters.

Soil core microbiota within cluster 1 were significantly higher than in cluster 4, and there is also a higher Copiotrophs/Oligotrophs ratio in cluster 1.

Our results corroborated that soil core microbiota is crucial for maintaining ecosystem multi-functionality.

Especially, the core taxa within the clusters of networks under tree planting, with the same ecological preferences, had a significant contribution to ecosystem multi-functionality.

Conclusion Overall, our results provide further insight into the linkage between core taxa and ecosystem multi-functionality.

This enables us to predict how ecosystem functions respond to the environmental changes in areas under the C. camphora coppice planting.

Thus, conserving the soil microbiota, especially the core taxa, is essential to maintaining the multiple ecosystem functions under the C. camphora coppice planting.

Sun, Luyuan,Li, Guilong,Zhao, Jiao,Zhang, Ting,Liu, Jia,Zhang, Jie, 2024, Core microbiota drive multi-functionality of the soil microbiome in the Cinnamomum camphora coppice planting, BioMed Central

Document

Open

Share

Source

Articles recommended by ES/IODE AI

Systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for lung cancer
agphd1 subtypes replication hykk squamous cell gene carcinoma causal targets mendelian randomization cancer analysis