Document detail
ID

oai:arXiv.org:2306.04748

Topic
Computer Science - Machine Learnin...
Author
Ram, Ashwin
Category

Computer Science

Year

2023

listing date

6/19/2024

Keywords
parkinson disease pd machine learning research
Metrics

Abstract

This paper represents a groundbreaking advancement in Parkinson disease (PD) research by employing a novel machine learning framework to categorize PD into distinct subtypes and predict its progression.

Utilizing a comprehensive dataset encompassing both clinical and neurological parameters, the research applies advanced supervised and unsupervised learning techniques.

This innovative approach enables the identification of subtle, yet critical, patterns in PD manifestation, which traditional methodologies often miss.

Significantly, this research offers a path toward personalized treatment strategies, marking a major stride in the precision medicine domain and showcasing the transformative potential of integrating machine learning into medical research.

;Comment: 15 Pages.

Machine Learning; Signal Processing; Parkinson's Disease

Ram, Ashwin, 2023, Analysis, Identification and Prediction of Parkinson Disease Sub-Types and Progression through Machine Learning

Document

Open

Share

Source

Articles recommended by ES/IODE AI

Lung cancer risk and exposure to air pollution: a multicenter North China case–control study involving 14604 subjects
lung cancer case–control air pollution never-smokers nomogram model controls lung-related 14604 subjects north polluted consistent smokers quit exposure lung cancer risk air people factor smoking pollution study history