Document detail
ID

oai:arXiv.org:2307.14361

Topic
Quantitative Biology - Quantitativ... Computer Science - Artificial Inte... Computer Science - Computation and... Computer Science - Machine Learnin...
Author
Aburass, Sanad Dorgham, Osama Shaqsi, Jamil Al
Category

Computer Science

Year

2023

listing date

5/22/2024

Keywords
precision cancer
Metrics

Abstract

In our study, we introduce a novel hybrid ensemble model that synergistically combines LSTM, BiLSTM, CNN, GRU, and GloVe embeddings for the classification of gene mutations in cancer.

This model was rigorously tested using Kaggle's Personalized Medicine: Redefining Cancer Treatment dataset, demonstrating exceptional performance across all evaluation metrics.

Notably, our approach achieved a training accuracy of 80.6%, precision of 81.6%, recall of 80.6%, and an F1 score of 83.1%, alongside a significantly reduced Mean Squared Error (MSE) of 2.596.

These results surpass those of advanced transformer models and their ensembles, showcasing our model's superior capability in handling the complexities of gene mutation classification.

The accuracy and efficiency of gene mutation classification are paramount in the era of precision medicine, where tailored treatment plans based on individual genetic profiles can dramatically improve patient outcomes and save lives.

Our model's remarkable performance highlights its potential in enhancing the precision of cancer diagnoses and treatments, thereby contributing significantly to the advancement of personalized healthcare.

;Comment: 6 pages, 7 figures and 2 tables

Aburass, Sanad,Dorgham, Osama,Shaqsi, Jamil Al, 2023, A Hybrid Machine Learning Model for Classifying Gene Mutations in Cancer using LSTM, BiLSTM, CNN, GRU, and GloVe

Document

Open

Share

Source

Articles recommended by ES/IODE AI

A rare case of localized peliosis hepatis during adjuvant chemotherapy including oxaliplatin mimicking a liver metastasis of colon cancer
peliosis hepatis metastatic liver tumor oxaliplatin oxaliplatin associated cancer metastatic tumor liver hepatis peliosis