Document detail
ID

oai:pubmedcentral.nih.gov:1014...

Topic
Research Articles
Author
Deniz, Fatma Tseng, Christine Wehbe, Leila Dupré la Tour, Tom Gallant, Jack L.
Langue
en
Editor

Society for Neuroscience

Category

The Journal of Neuroscience

Year

2023

listing date

11/1/2023

Keywords
sentences context natural studies representation results language semantic meaning words generalize little neuroimaging stimuli isolated
Metrics

Abstract

The meaning of words in natural language depends crucially on context.

However, most neuroimaging studies of word meaning use isolated words and isolated sentences with little context.

Because the brain may process natural language differently from how it processes simplified stimuli, there is a pressing need to determine whether prior results on word meaning generalize to natural language.

fMRI was used to record human brain activity while four subjects (two female) read words in four conditions that vary in context: narratives, isolated sentences, blocks of semantically similar words, and isolated words.

We then compared the signal-to-noise ratio (SNR) of evoked brain responses, and we used a voxelwise encoding modeling approach to compare the representation of semantic information across the four conditions.

We find four consistent effects of varying context.

First, stimuli with more context evoke brain responses with higher SNR across bilateral visual, temporal, parietal, and prefrontal cortices compared with stimuli with little context.

Second, increasing context increases the representation of semantic information across bilateral temporal, parietal, and prefrontal cortices at the group level.

In individual subjects, only natural language stimuli consistently evoke widespread representation of semantic information.

Third, context affects voxel semantic tuning.

Finally, models estimated using stimuli with little context do not generalize well to natural language.

These results show that context has large effects on the quality of neuroimaging data and on the representation of meaning in the brain.

Thus, neuroimaging studies that use stimuli with little context may not generalize well to the natural regime.

SIGNIFICANCE STATEMENT Context is an important part of understanding the meaning of natural language, but most neuroimaging studies of meaning use isolated words and isolated sentences with little context.

Here, we examined whether the results of neuroimaging studies that use out-of-context stimuli generalize to natural language.

We find that increasing context improves the quality of neuro-imaging data and changes where and how semantic information is represented in the brain.

These results suggest that findings from studies using out-of-context stimuli may not generalize to natural language used in daily life.

Deniz, Fatma,Tseng, Christine,Wehbe, Leila,Dupré la Tour, Tom,Gallant, Jack L., 2023, Semantic Representations during Language Comprehension Are Affected by Context, Society for Neuroscience

Document

Open Open

Share

Source

Articles recommended by ES/IODE AI

Multiplexed live-cell imaging for drug responses in patient-derived organoid models of cancer
cell organoid patient-derived kinetic system effects cancer pdo models