Document detail
ID

doi:10.1038/s41698-023-00406-8...

Author
Zhao, Melissa Lau, Mai Chan Haruki, Koichiro Väyrynen, Juha P. Gurjao, Carino Väyrynen, Sara A. Dias Costa, Andressa Borowsky, Jennifer Fujiyoshi, Kenji Arima, Kota Hamada, Tsuyoshi Lennerz, Jochen K. Fuchs, Charles S. Nishihara, Reiko Chan, Andrew T. Ng, Kimmie Zhang, Xuehong Meyerhardt, Jeffrey A. Song, Mingyang Wang, Molin Giannakis, Marios Nowak, Jonathan A. Yu, Kun-Hsing Ugai, Tomotaka Ogino, Shuji
Langue
en
Editor

Nature

Category

Medicine & Public Health

Year

2023

listing date

6/14/2023

Keywords
model colorectal tumor risk cancer
Metrics

Abstract

Routine tumor-node-metastasis (TNM) staging of colorectal cancer is imperfect in predicting survival due to tumor pathobiological heterogeneity and imprecise assessment of tumor spread.

We leveraged Bayesian additive regression trees (BART), a statistical learning technique, to comprehensively analyze patient-specific tumor characteristics for the improvement of prognostic prediction.

Of 75 clinicopathologic, immune, microbial, and genomic variables in 815 stage II–III patients within two U.S.-wide prospective cohort studies, the BART risk model identified seven stable survival predictors.

Risk stratifications (low risk, intermediate risk, and high risk) based on model-predicted survival were statistically significant (hazard ratios 0.19–0.45, vs. higher risk; P  < 0.0001) and could be externally validated using The Cancer Genome Atlas (TCGA) data ( P  = 0.0004).

BART demonstrated model flexibility, interpretability, and comparable or superior performance to other machine-learning models.

Integrated bioinformatic analyses using BART with tumor-specific factors can robustly stratify colorectal cancer patients into prognostic groups and be readily applied to clinical oncology practice.

Zhao, Melissa,Lau, Mai Chan,Haruki, Koichiro,Väyrynen, Juha P.,Gurjao, Carino,Väyrynen, Sara A.,Dias Costa, Andressa,Borowsky, Jennifer,Fujiyoshi, Kenji,Arima, Kota,Hamada, Tsuyoshi,Lennerz, Jochen K.,Fuchs, Charles S.,Nishihara, Reiko,Chan, Andrew T.,Ng, Kimmie,Zhang, Xuehong,Meyerhardt, Jeffrey A.,Song, Mingyang,Wang, Molin,Giannakis, Marios,Nowak, Jonathan A.,Yu, Kun-Hsing,Ugai, Tomotaka,Ogino, Shuji, 2023, Bayesian risk prediction model for colorectal cancer mortality through integration of clinicopathologic and genomic data, Nature

Document

Open

Share

Source

Articles recommended by ES/IODE AI

SHMT2 regulates esophageal cancer cell progression and immune Escape by mediating m6A modification of c-myc
shmt2 ec m6a modification c-myc one carbon metabolism cancer progression escape immune experiments related c-myc expression ec modification