Documentdetail
ID kaart

doi:10.1186/s12866-023-03037-y...

Auteur
Tan, Asako Murugapiran, Senthil Mikalauskas, Alaya Koble, Jeff Kennedy, Drew Hyde, Fred Ruotti, Victor Law, Emily Jensen, Jordan Schroth, Gary P. Macklaim, Jean M. Kuersten, Scott LeFrançois, Brice Gohl, Daryl M.
Langue
en
Editor

BioMed Central

Categorie

Mycology

Jaar

2023

vermelding datum

25-10-2023

Trefwoorden
next-generation sequencing microbiome metatranscriptomics rrna depletion depletion human rrna
Metriek

Beschrijving

The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time.

Gene expression measurements can provide insights into microbiome composition and function.

However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data.

Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities.

We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples.

Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles.

Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome.

The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.

Tan, Asako,Murugapiran, Senthil,Mikalauskas, Alaya,Koble, Jeff,Kennedy, Drew,Hyde, Fred,Ruotti, Victor,Law, Emily,Jensen, Jordan,Schroth, Gary P.,Macklaim, Jean M.,Kuersten, Scott,LeFrançois, Brice,Gohl, Daryl M., 2023, Rational probe design for efficient rRNA depletion and improved metatranscriptomic analysis of human microbiomes, BioMed Central

Document

Openen

Delen

Bron

Artikelen aanbevolen door ES/IODE AI

Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature
non-small-cell lung cancer bone metastasis radiomics risk factor predict cohort model cect cancer prediction 0 metastasis radiomics clinical