Documentdetail
ID kaart

doi:10.1007/s11255-024-04022-8...

Auteur
Roumeliotis, Stefanos Schurgers, Juul Tsalikakis, Dimitrios G. D’Arrigo, Graziella Gori, Mercedes Pitino, Annalisa Leonardis, Daniela Tripepi, Giovanni Liakopoulos, Vassilios
Langue
en
Editor

Springer

Categorie

Urology

Jaar

2024

vermelding datum

27-03-2024

Trefwoorden
area under the curve diagnostic test, discriminatory ability receiver operator characteristic c... sensitivity specificity performance biomarker nephrology
Metriek

Beschrijving

In the past decade, scientific research in the area of Nephrology has focused on evaluating the clinical utility and performance of various biomarkers for diagnosis, risk stratification and prognosis.

Before implementing a biomarker in everyday clinical practice for screening a specific disease context, specific statistic measures are necessary to evaluate the diagnostic accuracy and performance of this biomarker.

Receiver Operating Characteristic (ROC) Curve analysis is an important statistical method used to estimate the discriminatory performance of a novel diagnostic test, identify the optimal cut-off value for a test that maximizes sensitivity and specificity, and evaluate the predictive value of a certain biomarker or risk, prediction score.

Herein, through practical examples, we aim to present a simple methodological approach to explain in detail the principles and applications of ROC curve analysis in the field of nephrology pertaining diagnosis and prognosis.

Roumeliotis, Stefanos,Schurgers, Juul,Tsalikakis, Dimitrios G.,D’Arrigo, Graziella,Gori, Mercedes,Pitino, Annalisa,Leonardis, Daniela,Tripepi, Giovanni,Liakopoulos, Vassilios, 2024, ROC curve analysis: a useful statistic multi-tool in the research of nephrology, Springer

Document

Openen

Delen

Bron

Artikelen aanbevolen door ES/IODE AI

Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature
non-small-cell lung cancer bone metastasis radiomics risk factor predict cohort model cect cancer prediction 0 metastasis radiomics clinical