Documentdetail
ID kaart

oai:arXiv.org:2307.11695

Onderwerp
Computer Science - Machine Learnin...
Auteur
Strzałka, Krystian Mazurek, Szymon Wielgosz, Maciej Russek, Paweł Caputa, Jakub Łukasik, Daria Krupiński, Jan Grzeszczyk, Jakub Karwatowski, Michał Frączek, Rafał Jamro, Ernest Pietroń, Marcin Koryciak, Sebastian Dąbrowska-Boruch, Agnieszka Wiatr, Kazimierz
Categorie

Computer Science

Jaar

2023

vermelding datum

26-07-2023

Trefwoorden
acquisition medicine veterinary
Metriek

Beschrijving

This paper explores the innovative use of simulation environments to enhance data acquisition and diagnostics in veterinary medicine, focusing specifically on gait analysis in dogs.

The study harnesses the power of Blender and the Blenderproc library to generate synthetic datasets that reflect diverse anatomical, environmental, and behavioral conditions.

The generated data, represented in graph form and standardized for optimal analysis, is utilized to train machine learning algorithms for identifying normal and abnormal gaits.

Two distinct datasets with varying degrees of camera angle granularity are created to further investigate the influence of camera perspective on model accuracy.

Preliminary results suggest that this simulation-based approach holds promise for advancing veterinary diagnostics by enabling more precise data acquisition and more effective machine learning models.

By integrating synthetic and real-world patient data, the study lays a robust foundation for improving overall effectiveness and efficiency in veterinary medicine.

Strzałka, Krystian,Mazurek, Szymon,Wielgosz, Maciej,Russek, Paweł,Caputa, Jakub,Łukasik, Daria,Krupiński, Jan,Grzeszczyk, Jakub,Karwatowski, Michał,Frączek, Rafał,Jamro, Ernest,Pietroń, Marcin,Koryciak, Sebastian,Dąbrowska-Boruch, Agnieszka,Wiatr, Kazimierz, 2023, Using simulation to calibrate real data acquisition in veterinary medicine

Document

Openen

Delen

Bron

Artikelen aanbevolen door ES/IODE AI

Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature
non-small-cell lung cancer bone metastasis radiomics risk factor predict cohort model cect cancer prediction 0 metastasis radiomics clinical