Documentdetail
ID kaart

oai:pubmedcentral.nih.gov:1057...

Onderwerp
Articles
Auteur
Jo, Taeho Kim, Junpyo Bice, Paula Huynh, Kevin Wang, Tingting Arnold, Matthias Meikle, Peter J. Giles, Corey Kaddurah-Daouk, Rima Saykin, Andrew J. Nho, Kwangsik
Langue
en
Editor

Elsevier

Categorie

ebiom

Jaar

2023

vermelding datum

25-10-2023

Trefwoorden
0 alzheimer disease feature data ad c-swat
Metriek

Beschrijving

BACKGROUND: Deep learning has shown potential in various scientific domains but faces challenges when applied to complex, high-dimensional multi-omics data.

Alzheimer's Disease (AD) is a neurodegenerative disorder that lacks targeted therapeutic options.

This study introduces the Circular-Sliding Window Association Test (c-SWAT) to improve the classification accuracy in predicting AD using serum-based metabolomics data, specifically lipidomics.

METHODS: The c-SWAT methodology builds upon the existing Sliding Window Association Test (SWAT) and utilizes a three-step approach: feature correlation analysis, feature selection, and classification.

Data from 997 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) served as the basis for model training and validation.

Feature correlations were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), and Convolutional Neural Networks (CNN) were employed for feature selection.

Random Forest was used for the final classification.

FINDINGS: The application of c-SWAT resulted in a classification accuracy of up to 80.8% and an AUC of 0.808 for distinguishing AD from cognitively normal older adults.

This marks a 9.4% improvement in accuracy and a 0.169 increase in AUC compared to methods without c-SWAT.

These results were statistically significant, with a p-value of 1.04 × 10ˆ-4.

The approach also identified key lipids associated with AD, such as Cer(d16:1/22:0) and PI(37:6).

INTERPRETATION: Our results indicate that c-SWAT is effective in improving classification accuracy and in identifying potential lipid biomarkers for AD.

These identified lipids offer new avenues for understanding AD and warrant further investigation.

FUNDING: The specific funding of this article is provided in the acknowledgements section.

Jo, Taeho,Kim, Junpyo,Bice, Paula,Huynh, Kevin,Wang, Tingting,Arnold, Matthias,Meikle, Peter J.,Giles, Corey,Kaddurah-Daouk, Rima,Saykin, Andrew J.,Nho, Kwangsik,, 2023, Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: application to metabolome data, Elsevier

Delen

Bron

Artikelen aanbevolen door ES/IODE AI

Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature
non-small-cell lung cancer bone metastasis radiomics risk factor predict cohort model cect cancer prediction 0 metastasis radiomics clinical