Documentdetail
ID kaart

oai:arXiv.org:2406.08571

Onderwerp
Astrophysics - Instrumentation and...
Auteur
Miller, Niall Lucas, Philip Sun, Yi Guo, Zhen Morris, Calum Cooper, William
Categorie

wetenschappen: astrofysica

Jaar

2024

vermelding datum

19-06-2024

Trefwoorden
methods curve light data
Metriek

Beschrijving

The ability to automatically and robustly self-verify periodicity present in time-series astronomical data is becoming more important as data sets rapidly increase in size.

The age of large astronomical surveys has rendered manual inspection of time-series data less practical.

Previous efforts in generating a false alarm probability to verify the periodicity of stars have been aimed towards the analysis of a constructed periodogram.

However, these methods feature correlations with features that do not pertain to periodicity, such as light curve shape, slow trends and stochastic variability.

The common assumption that photometric errors are Gaussian and well determined is also a limitation of analytic methods.

We present a novel machine learning based technique which directly analyses the phase folded light curve for its false alarm probability.

We show that the results of this method are largely insensitive to the shape of the light curve, and we establish minimum values for the number of data points and the amplitude to noise ratio.

Miller, Niall,Lucas, Philip,Sun, Yi,Guo, Zhen,Morris, Calum,Cooper, William, 2024, The verification of periodicity with the use of recurrent neural networks

Document

Openen

Delen

Bron

Artikelen aanbevolen door ES/IODE AI

A rare case of localized peliosis hepatis during adjuvant chemotherapy including oxaliplatin mimicking a liver metastasis of colon cancer
peliosis hepatis metastatic liver tumor oxaliplatin oxaliplatin associated cancer metastatic tumor liver hepatis peliosis