Documentdetail
ID kaart

oai:arXiv.org:2411.08519

Onderwerp
Astrophysics - Instrumentation and...
Auteur
Riggi, S. Cecconello, T. Becciani, U. Vitello, F.
Categorie

wetenschappen: astrofysica

Jaar

2024

vermelding datum

20-11-2024

Trefwoorden
sources
Metriek

Beschrijving

In this paper we present three different applications, based on deep learning methodologies, that we are developing to support the scientific analysis conducted within the ASKAP-EMU and MeerKAT radio surveys.

One employs instance segmentation frameworks to detect compact and extended radio sources and imaging artefacts from radio continuum images.

Another application uses gradient boosting decision trees and convolutional neural networks to classify compact sources into different astronomical classes using combined radio and infrared multi-band images.

Finally, we discuss how self-supervised learning can be used to obtain valuable radio data representations for source detection, and classification studies.

;Comment: 4 pages, 0 figures, proceedings of the XXXIII Astronomical Data Analysis Software & Systems (ADASS) conference, 5-9 November 2023, Tucson, Arizona, USA

Riggi, S.,Cecconello, T.,Becciani, U.,Vitello, F., 2024, Detection and classification of radio sources with deep learning

Document

Openen

Delen

Bron

Artikelen aanbevolen door ES/IODE AI

Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature
non-small-cell lung cancer bone metastasis radiomics risk factor predict cohort model cect cancer prediction 0 metastasis radiomics clinical