Document detail
ID

oai:arXiv.org:2405.07755

Topic
Astrophysics - Solar and Stellar A...
Author
Baker, D. van Driel-Gesztelyi, L. James, A. W. Demoulin, P. To, A. S. H. Murabito, M. Long, D. M. Brooks, D. H. McKevitt, J. Laming, J. M. Green, L. M. Yardley, S. L. Valori, G. Mihailescu, T. Matthews, S. A. Kuniyoshi, H.
Category

sciences: astrophysics

Year

2024

listing date

5/15/2024

Keywords
coronae observations stars evidence reconnection magnetic
Metrics

Abstract

Within the coronae of stars, abundances of those elements with low first ionization potential (FIP) often differ from their photospheric values.

The coronae of the Sun and solar-type stars mostly show enhancements of low-FIP elements (the FIP effect) while more active stars such as M dwarfs have coronae generally characterized by the inverse-FIP (I-FIP) effect.

Highly localized regions of I-FIP effect solar plasma have been observed by Hinode/EIS in a number of highly complex active regions, usually around strong light bridges of the umbrae of coalescing/merging sunspots.

These observations can be interpreted in the context of the ponderomotive force fractionation model which predicts that plasma with I-FIP effect composition is created by the refraction of waves coming from below the plasma fractionation region in the chromosphere.

A plausible source of these waves is thought to be reconnection in the (high-plasma \b{eta}) subchromospheric magnetic field.

In this study, we use the 3D visualization technique of Chintzoglou & Zhang (2013) combined with observations of localized I-FIP effect in the corona of AR 11504 to identify potential sites of such reconnection and its possible consequences in the solar atmosphere.

We found subtle signatures of episodic heating and reconnection outflows in the expected places, in between magnetic flux tubes forming a light bridge, within the photosphere of the active region.

Furthermore, on either side of the light bridge, we observed small antiparallel horizontal magnetic field components supporting the possibility of reconnection occuring where we observe I-FIP plasma.

When taken together with the I-FIP effect observations, these subtle signatures provide a compelling case for indirect observational evidence of reconnection below the fractionation layer of the chromosphere, however, direct evidence remains elusive.

;Comment: Accepted ApJ

Baker, D.,van Driel-Gesztelyi, L.,James, A. W.,Demoulin, P.,To, A. S. H.,Murabito, M.,Long, D. M.,Brooks, D. H.,McKevitt, J.,Laming, J. M.,Green, L. M.,Yardley, S. L.,Valori, G.,Mihailescu, T.,Matthews, S. A.,Kuniyoshi, H., 2024, Searching for evidence of subchromospheric magnetic reconnection on the Sun

Document

Open

Share

Source

Articles recommended by ES/IODE AI