Dokumentdetails
ID

doi:10.1186/s13213-023-01723-w...

Autor
Wang, Jingjing Zhang, Ran Zhu, Guilan Wang, Lingling Bai, Han Qian, Yong Zhou, Xiazhen Yin, Qiang Zhang, Yan
Langue
en
Editor

BioMed Central

Kategorie

Mycology

Jahr

2023

Auflistungsdatum

14.06.2023

Schlüsselwörter
bacterial laccase chloride tolerance dye decolorization redox mediator potential halomonas alkaliantartica effect activity lacha laccase
Metrisch

Zusammenfassung

Introduction Laccase is a copper-containing polyphenolic oxidase widely found in bacteria, archaea, fungi, animals, and plants.

As a green biocatalyst with considerable potential for numerous environmental and industrial applications, the enzyme production efficiency of laccase in nature is low, and the cost is high.

Purpose To examine the characterization and potential applications of laccase in this study, a novel laccase from Halomonas alkaliantartica (LacHa) was cloned and heterologously expressed it in Escherichia coli .

Results To achieve heterologous and efficient laccase expression, a bacterial laccase gene designed as LacHa from Halomonas alkaliantartica of deep sea was cloned and expressed in E. coli .

The results showed that the optimum temperature and pH of the enzyme reaction were 45 °C and 7.5.

The 100 μM Cu^2+ and Fe^2+ ions had the strongest stimulatory effect on laccase activity, the surface-active agent SDS and organic solvent 5% ethanol had opposite effect.

EDTA, and 5% DMSO have no effect on LacHa activity.

The activity of LacHa was enhanced 1.5-fold by chloride at concentrations lower than 500 mM, and 57.6% of its initial activity remained in the reaction system containing 1000 mM.

NaCl.

Furthermore, LacHa showed decolorization rates ranging from 90.28 to 100% for indigo carmine and two azo dyes without mediators, with wide pH (5.0–9.0) and temperature (25–65 °C) ranges.

Conclusions In this study, LacHa was expressed and showed unusual properties, indicating its great application potential in textile industries or environmental fields.

Wang, Jingjing,Zhang, Ran,Zhu, Guilan,Wang, Lingling,Bai, Han,Qian, Yong,Zhou, Xiazhen,Yin, Qiang,Zhang, Yan, 2023, Expression of a deep-sea bacterial laccase from Halomonas alkaliantartica and its application in dyes decolorization, BioMed Central

Dokumentieren

Öffnen

Teilen

Quelle

Artikel empfohlen von ES/IODE AI

Diabetes and obesity: the role of stress in the development of cancer
stress diabetes mellitus obesity cancer non-communicable chronic disease stress diabetes obesity patients cause cancer