Dokumentdetails
ID

oai:pubmedcentral.nih.gov:1109...

Thema
Medicine, Oncology, Drug Design, D...
Autor
Khan, Haseeb Ahmad Isab, Anvarhusein Abdulkadir Alhomida, Abdullah Saleh Gatasheh, Mansour Khalil Alhoshani, Ali Rashid Aldhafeeri, Bashayr Ahmed Prasad, N Rajendra
Langue
en
Editor

Bentham Science Publishers

Kategorie

Bentham Open Access

Jahr

2024

Auflistungsdatum

11.06.2024

Schlüsselwörter
induction concentrations design cells breast drug pbtdg cancer sorafenib concentration respectively caused effects anticancer µm
Metrisch

Zusammenfassung

BACKGROUND: Platinum complexes are commonly used for cancer chemotherapy; however, they are not only highly-priced but also have various side effects.

It is, therefore, important to design affordable anticancer drugs with minimal side effects.

METHODS: We synthesized a new gold(I) complex, PF6{(BDPEA)(TPPMS) digold(I)} (abbreviated as PBTDG) and tested its cytotoxicity in MCF-7 breast cancer cells.

We also evaluated the effects of PBTDG on mitochondrial membrane potential, generation of reactive oxygen species (ROS) and apoptosis in breast cancer cells.

RESULTS: The IC(50) values for PBTDG and sorafenib were found to be 1.48 μM and 4.45 μM, respectively.

Exposure to PBTDG caused significant and concentration-dependent depletion of ATP and disruption of mitochondrial membrane potential.

PBTDG induced 2.6, 3.6, and 5.7-fold apoptosis for 1 µM, 3 µM, and 10 µM concentrations, respectively.

The induction of apoptosis by the same concentrations of sorafenib was 1.2, 1.3, and 1.6-fold, respectively.

The low concentration of PBTDG (1 µM) induced the generation of ROS by 99.83%, which was significantly higher than the ROS generation caused by the same concentration of sorafenib (73.76%).

The ROS induction caused by higher concentrations (5 µM) of PBTDG and sorafenib were 104.95% and 122.11%, respectively.

CONCLUSION: The lower concentration of PBTDG produced similar cytotoxicity and apoptotic effects that were caused by a comparatively higher concentration of known anticancer drug (sorafenib).

The anticancer effects of PBTDG are attributed to its tendency to disrupt mitochondrial membrane potential, induction of apoptosis and generation of ROS.

Further studies are warranted to test the anticancer effects of PBTDG in animal models of cancer.

Khan, Haseeb Ahmad,Isab, Anvarhusein Abdulkadir,Alhomida, Abdullah Saleh,Gatasheh, Mansour Khalil,Alhoshani, Ali Rashid,Aldhafeeri, Bashayr Ahmed,Prasad, N Rajendra, 2024, Synthesis of a Novel Gold(I) Complex and Evaluation of Its Anticancer Properties in Breast Cancer Cells, Bentham Science Publishers

Dokumentieren

Öffnen Öffnen

Teilen

Quelle

Artikel empfohlen von ES/IODE AI