Dokumentdetails
ID

oai:pubmedcentral.nih.gov:9173...

Thema
Research Article
Autor
Sarankumar, R. Vinod, D. Anitha, K. Manohar, Gunaselvi Vijayanand, Karunanithi Senthamilselvi Pant, Bhaskar Sundramurthy, Venkatesa Prabhu
Langue
en
Editor

Hindawi

Kategorie

Computational Intelligence and Neuroscience

Jahr

2022

Auflistungsdatum

12.12.2022

Schlüsselwörter
accuracy prediction parkinson
Metrisch

Zusammenfassung

Parkinson's disease (PD) is a neurodegenerative illness that progresses and is long-lasting.

It becomes more difficult to talk, write, walk, and do other basic functions when the brain's dopamine-generating neurons are injured or killed.

There is a gradual rise in the intensity of these symptoms over time.

Using Parkinson's Telemonitoring Voice Data Set from UCI and deep neural networks, we provide a strategy for predicting the severity of Parkinson's disease in this research.

An unprocessed speech recording contains a slew of unintelligible data that makes correct diagnosis difficult.

Therefore, the raw signal data must be preprocessed using the signal error drop standardization while the features can be grouped by using the wavelet cleft fuzzy algorithm.

Then the abnormal features can be selected by using the firming bacteria foraging algorithm for feature size decomposition process.

Then classification was made using the deep brooke inception net classifier.

The performances of the classifier are compared where the simulation results show that the proposed strategy accuracy in detecting severity of the Parkinson's disease is better than other conventional methods.

The proposed DBIN model achieved better accuracy compared to other existing techniques.

It is also found that the classification based on extracted voice abnormality data achieves better accuracy (99.8%) over PD prediction; hence it can be concluded as a better metric for severity prediction.

Sarankumar, R.,Vinod, D.,Anitha, K.,Manohar, Gunaselvi,Vijayanand, Karunanithi Senthamilselvi,Pant, Bhaskar,Sundramurthy, Venkatesa Prabhu, 2022, Severity Prediction over Parkinson's Disease Prediction by Using the Deep Brooke Inception Net Classifier, Hindawi

Dokumentieren

Öffnen Öffnen

Teilen

Quelle

Artikel empfohlen von ES/IODE AI

Revisiting anti-Hu paraneoplastic autoimmunity: phenotypic characterization and cancer diagnosis
syndromes 0 multifocal pet presentation paraneoplastic autoimmunity patients anti-hu screening scan neurological cancer onset clinical