Dokumentdetails
ID

oai:arXiv.org:2403.14056

Thema
Computer Science - Computer Vision... Computer Science - Robotics
Autor
Lee, Connor Soedarmadji, Saraswati Anderson, Matthew Clark, Anthony J. Chung, Soon-Jo
Kategorie

Computer Science

Jahr

2024

Auflistungsdatum

27.03.2024

Schlüsselwörter
data computer thermal segmentation semantic
Metrisch

Zusammenfassung

We present a new method to automatically generate semantic segmentation annotations for thermal imagery captured from an aerial vehicle by utilizing satellite-derived data products alongside onboard global positioning and attitude estimates.

This new capability overcomes the challenge of developing thermal semantic perception algorithms for field robots due to the lack of annotated thermal field datasets and the time and costs of manual annotation, enabling precise and rapid annotation of thermal data from field collection efforts at a massively-parallelizable scale.

By incorporating a thermal-conditioned refinement step with visual foundation models, our approach can produce highly-precise semantic segmentation labels using low-resolution satellite land cover data for little-to-no cost.

It achieves 98.5% of the performance from using costly high-resolution options and demonstrates between 70-160% improvement over popular zero-shot semantic segmentation methods based on large vision-language models currently used for generating annotations for RGB imagery.

Code will be available at: https://github.com/connorlee77/aerial-auto-segment.

Lee, Connor,Soedarmadji, Saraswati,Anderson, Matthew,Clark, Anthony J.,Chung, Soon-Jo, 2024, Semantics from Space: Satellite-Guided Thermal Semantic Segmentation Annotation for Aerial Field Robots

Dokumentieren

Öffnen

Teilen

Quelle

Artikel empfohlen von ES/IODE AI

Systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for lung cancer
agphd1 subtypes replication hykk squamous cell gene carcinoma causal targets mendelian randomization cancer analysis