Dokumentdetails
ID

oai:arXiv.org:2410.06311

Thema
Computer Science - Information Ret... Computer Science - Artificial Inte... Computer Science - Machine Learnin... H.3.3
Autor
Sikosana, Mkululi Ajao, Oluwaseun Maudsley-Barton, Sean
Kategorie

Computer Science

Jahr

2024

Auflistungsdatum

16.10.2024

Schlüsselwörter
osns health learning misinformation dl models
Metrisch

Zusammenfassung

This study evaluates the effectiveness of machine learning (ML) and deep learning (DL) models in detecting COVID-19-related misinformation on online social networks (OSNs), aiming to develop more effective tools for countering the spread of health misinformation during the pan-demic.

The study trained and tested various ML classifiers (Naive Bayes, SVM, Random Forest, etc.), DL models (CNN, LSTM, hybrid CNN+LSTM), and pretrained language models (DistilBERT, RoBERTa) on the "COVID19-FNIR DATASET".

These models were evaluated for accuracy, F1 score, recall, precision, and ROC, and used preprocessing techniques like stemming and lemmatization.

The results showed SVM performed well, achieving a 94.41% F1-score.

DL models with Word2Vec embeddings exceeded 98% in all performance metrics (accuracy, F1 score, recall, precision & ROC).

The CNN+LSTM hybrid models also exceeded 98% across performance metrics, outperforming pretrained models like DistilBERT and RoBERTa.

Our study concludes that DL and hybrid DL models are more effective than conventional ML algorithms for detecting COVID-19 misinformation on OSNs.

The findings highlight the importance of advanced neural network approaches and large-scale pretraining in misinformation detection.

Future research should optimize these models for various misinformation types and adapt to changing OSNs, aiding in combating health misinformation.

;Comment: 8 pages, 4 tables presented at the OASIS workshop of the ACM Hypertext and Social Media Conference 2024

Sikosana, Mkululi,Ajao, Oluwaseun,Maudsley-Barton, Sean, 2024, A Comparative Study of Hybrid Models in Health Misinformation Text Classification

Dokumentieren

Öffnen

Teilen

Quelle

Artikel empfohlen von ES/IODE AI

Skin cancer prevention behaviors, beliefs, distress, and worry among hispanics in Florida and Puerto Rico
skin cancer hispanic/latino prevention behaviors protection motivation theory florida puerto rico variables rico psychosocial behavior response efficacy levels skin cancer participants prevention behaviors spanish-preferring tampeños puerto hispanics