detalle del documento
IDENTIFICACIÓN

doi:10.1186/s12874-023-01837-4...

Autor
Aguayo, Gloria A. Zhang, Lu Vaillant, Michel Ngari, Moses Perquin, Magali Moran, Valerie Huiart, Laetitia Krüger, Rejko Azuaje, Francisco Ferdynus, Cyril Fagherazzi, Guy
Langue
en
Editor

BioMed Central

Categoría

Medicine & Public Health

Año

2023

fecha de cotización

18/1/2023

Palabras clave
deep neural networks cox models parkinson disease alzheimer dementia prediction tabular data older general population associated risk dnns population participants 0 cox features
Métrico

Resumen

Background In the older general population, neurodegenerative diseases (NDs) are associated with increased disability, decreased physical and cognitive function.

Detecting risk factors can help implement prevention measures.

Using deep neural networks (DNNs), a machine-learning algorithm could be an alternative to Cox regression in tabular datasets with many predictive features.

We aimed to compare the performance of different types of DNNs with regularized Cox proportional hazards models to predict NDs in the older general population.

Methods We performed a longitudinal analysis with participants of the English Longitudinal Study of Ageing.

We included men and women with no NDs at baseline, aged 60 years and older, assessed every 2 years from 2004 to 2005 (wave2) to 2016–2017 (wave 8).

The features were a set of 91 epidemiological and clinical baseline variables.

The outcome was new events of Parkinson’s, Alzheimer or dementia.

After applying multiple imputations, we trained three DNN algorithms: Feedforward, TabTransformer, and Dense Convolutional (Densenet).

In addition, we trained two algorithms based on Cox models: Elastic Net regularization (CoxEn) and selected features (CoxSf).

Results 5433 participants were included in wave 2.

During follow-up, 12.7% participants developed NDs.

Although the five models predicted NDs events, the discriminative ability was superior using TabTransformer (Uno’s C-statistic (coefficient (95% confidence intervals)) 0.757 (0.702, 0.805).

TabTransformer showed superior time-dependent balanced accuracy (0.834 (0.779, 0.889)) and specificity (0.855 (0.0.773, 0.909)) than the other models.

With the CoxSf (hazard ratio (95% confidence intervals)), age (10.0 (6.9, 14.7)), poor hearing (1.3 (1.1, 1.5)) and weight loss 1.3 (1.1, 1.6)) were associated with a higher DNN risk.

In contrast, executive function (0.3 (0.2, 0.6)), memory (0, 0, 0.1)), increased gait speed (0.2, (0.1, 0.4)), vigorous physical activity (0.7, 0.6, 0.9)) and higher BMI (0.4 (0.2, 0.8)) were associated with a lower DNN risk.

Conclusion TabTransformer is promising for prediction of NDs with heterogeneous tabular datasets with numerous features.

Moreover, it can handle censored data.

However, Cox models perform well and are easier to interpret than DNNs.

Therefore, they are still a good choice for NDs.

Aguayo, Gloria A.,Zhang, Lu,Vaillant, Michel,Ngari, Moses,Perquin, Magali,Moran, Valerie,Huiart, Laetitia,Krüger, Rejko,Azuaje, Francisco,Ferdynus, Cyril,Fagherazzi, Guy, 2023, Machine learning for predicting neurodegenerative diseases in the general older population: a cohort study, BioMed Central

Documento

Abrir

Compartir

Fuente

Artículos recomendados por ES/IODE IA