detalle del documento
IDENTIFICACIÓN

oai:arXiv.org:2403.12719

Tema
Computer Science - Machine Learnin...
Autor
Aviles-Rivero, Angelica I. Cheng, Chun-Wun Deng, Zhongying Kourtzi, Zoe Schönlieb, Carola-Bibiane
Categoría

Computer Science

Año

2024

fecha de cotización

27/3/2024

Palabras clave
introduce multi-modal alzheimer hypergraph
Métrico

Resumen

Early detection of Alzheimer's disease's precursor stages is imperative for significantly enhancing patient outcomes and quality of life.

This challenge is tackled through a semi-supervised multi-modal diagnosis framework.

In particular, we introduce a new hypergraph framework that enables higher-order relations between multi-modal data, while utilising minimal labels.

We first introduce a bilevel hypergraph optimisation framework that jointly learns a graph augmentation policy and a semi-supervised classifier.

This dual learning strategy is hypothesised to enhance the robustness and generalisation capabilities of the model by fostering new pathways for information propagation.

Secondly, we introduce a novel strategy for generating pseudo-labels more effectively via a gradient-driven flow.

Our experimental results demonstrate the superior performance of our framework over current techniques in diagnosing Alzheimer's disease.

Aviles-Rivero, Angelica I.,Cheng, Chun-Wun,Deng, Zhongying,Kourtzi, Zoe,Schönlieb, Carola-Bibiane, 2024, Bilevel Hypergraph Networks for Multi-Modal Alzheimer's Diagnosis

Documento

Abrir

Compartir

Fuente

Artículos recomendados por ES/IODE IA