detalle del documento
IDENTIFICACIÓN

oai:arXiv.org:2409.05671

Tema
Computer Science - Computational G...
Autor
García-Castellanos, Alejandro Medbouhi, Aniss Aiman Marchetti, Giovanni Luca Bekkers, Erik J. Kragic, Danica
Categoría

Computer Science

Año

2024

fecha de cotización

22/1/2025

Palabras clave
steiner hypersteiner
Métrico

Resumen

We propose HyperSteiner -- an efficient heuristic algorithm for computing Steiner minimal trees in the hyperbolic space.

HyperSteiner extends the Euclidean Smith-Lee-Liebman algorithm, which is grounded in a divide-and-conquer approach involving the Delaunay triangulation.

The central idea is rephrasing Steiner tree problems with three terminals as a system of equations in the Klein-Beltrami model.

Motivated by the fact that hyperbolic geometry is well-suited for representing hierarchies, we explore applications to hierarchy discovery in data.

Results show that HyperSteiner infers more realistic hierarchies than the Minimum Spanning Tree and is more scalable to large datasets than Neighbor Joining.

García-Castellanos, Alejandro,Medbouhi, Aniss Aiman,Marchetti, Giovanni Luca,Bekkers, Erik J.,Kragic, Danica, 2024, HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees

Documento

Abrir

Compartir

Fuente

Artículos recomendados por ES/IODE IA

Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature
non-small-cell lung cancer bone metastasis radiomics risk factor predict cohort model cect cancer prediction 0 metastasis radiomics clinical