detalle del documento
IDENTIFICACIÓN

oai:arXiv.org:2409.14585

Tema
Mathematics - Numerical Analysis Mathematics - Probability Statistics - Computation Statistics - Machine Learning 60G25, 60G35, 62F15, 62G07, 62M20,...
Autor
Bågmark, Kasper Andersson, Adam Larsson, Stig Rydin, Filip
Categoría

Computer Science

Año

2024

fecha de cotización

22/1/2025

Palabras clave
equation fokker--planck numerical scheme
Métrico

Resumen

A numerical scheme for approximating the nonlinear filtering density is introduced and its convergence rate is established, theoretically under a parabolic H\"ormander condition, and empirically in two numerical examples.

For the prediction step, between the noisy and partial measurements at discrete times, the scheme approximates the Fokker--Planck equation with a deep splitting scheme, combined with an exact update through Bayes' formula.

This results in a classical prediction-update filtering algorithm that operates online for new observation sequences post-training.

The algorithm employs a sampling-based Feynman--Kac approach, designed to mitigate the curse of dimensionality.

The convergence proof relies on stochastic integration by parts from the Malliavin calculus.

As a corollary we obtain the convergence rate for the approximation of the Fokker--Planck equation alone, disconnected from the filtering problem.

;Comment: 25 pages, 2 figures

Bågmark, Kasper,Andersson, Adam,Larsson, Stig,Rydin, Filip, 2024, A convergent scheme for the Bayesian filtering problem based on the Fokker--Planck equation and deep splitting

Documento

Abrir

Compartir

Fuente

Artículos recomendados por ES/IODE IA

Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature
non-small-cell lung cancer bone metastasis radiomics risk factor predict cohort model cect cancer prediction 0 metastasis radiomics clinical