detalle del documento
IDENTIFICACIÓN

oai:arXiv.org:2410.22304

Tema
Computer Science - Computation and... Computer Science - Machine Learnin...
Autor
Deng, Yihe Mineiro, Paul
Categoría

Computer Science

Año

2024

fecha de cotización

6/11/2024

Palabras clave
llm mathematical online reasoning
Métrico

Resumen

Mathematical reasoning is a crucial capability for Large Language Models (LLMs), yet generating detailed and accurate reasoning traces remains a significant challenge.

This paper introduces a novel approach to produce high-quality reasoning traces for LLM fine-tuning using online learning \textbf{Flows}.

Our method employs an incremental output production Flow, where component LLMs collaboratively construct solutions through iterative communication.

We train the Flow using online Direct Preference Optimization (DPO) learning with rollouts, generating DPO pairs for each training example and updating models in real-time.

We directly compare the quality of reasoning traces generated by our method with those produced through direct model inference, demonstrating the effectiveness of our approach in improving LLM performance in mathematical reasoning tasks.

;Comment: 5 pages, 4 figures, 1 table

Deng, Yihe,Mineiro, Paul, 2024, Flow-DPO: Improving LLM Mathematical Reasoning through Online Multi-Agent Learning

Documento

Abrir

Compartir

Fuente

Artículos recomendados por ES/IODE IA

Clinical Relevance of Plaque Distribution for Basilar Artery Stenosis
study endovascular imaging wall basilar complications plaque postoperative artery plaques stenosis