detalle del documento
IDENTIFICACIÓN

oai:arXiv.org:2503.23638

Tema
Mathematics - Numerical Analysis
Autor
BenSalah, Mohamed Tatar, Salih Ulusoy, Suleyman
Categoría

Computer Science

Año

2025

fecha de cotización

2/4/2025

Palabras clave
nonlinear hiv model diffusion
Métrico

Resumen

This study investigates an inverse problem associated with a time-fractional HIV infection model incorporating nonlinear diffusion.

The model describes the dynamics of uninfected target cells, infected cells, and free virus particles, where the diffusion terms are nonlinear density functions.

The primary objective is to recover the unknown diffusion functions by utilizing final-time measurement data.

Due to the inherent ill-posedness of the inverse problem and the presence of measurement noise, we employ a Bayesian inference framework to obtain stable and reliable estimates while quantifying uncertainty.

To solve the inverse problem efficiently, we develop an Iterative Regularizing Ensemble Kalman Method (IREKM), which enables the simultaneous estimation of multiple diffusion terms without requiring gradient information.

Numerical experiments validate the effectiveness of the proposed method in reconstructing the unknown diffusion terms under different noise levels, demonstrating its robustness and accuracy.

These findings contribute to a deeper understanding of HIV infection dynamics and provide a computational approach for parameter estimation in fractional diffusion models.

BenSalah, Mohamed,Tatar, Salih,Ulusoy, Suleyman, 2025, Bayesian Inference for a Time-Fractional HIV Model with Nonlinear Diffusion

Documento

Abrir

Compartir

Fuente

Artículos recomendados por ES/IODE IA

Hespi: A pipeline for automatically detecting information from hebarium specimen sheets
science recognition institutional detects text-based text pipeline specimen