detalle del documento
IDENTIFICACIÓN

oai:arXiv.org:2410.07548

Tema
Statistics - Machine Learning Astrophysics - Cosmology and Nonga... Computer Science - Information The... Computer Science - Machine Learnin... Physics - Data Analysis, Statistic...
Autor
Makinen, T. Lucas Sui, Ce Wandelt, Benjamin D. Porqueres, Natalia Heavens, Alan
Categoría

ciencias: astrofísica

Año

2024

fecha de cotización

16/10/2024

Palabras clave
inference information
Métrico

Resumen

We present a way to capture high-information posteriors from training sets that are sparsely sampled over the parameter space for robust simulation-based inference.

In physical inference problems, we can often apply domain knowledge to define traditional summary statistics to capture some of the information in a dataset.

We show that augmenting these statistics with neural network outputs to maximise the mutual information improves information extraction compared to neural summaries alone or their concatenation to existing summaries and makes inference robust in settings with low training data.

We introduce 1) two loss formalisms to achieve this and 2) apply the technique to two different cosmological datasets to extract non-Gaussian parameter information.

;Comment: 7 pages, 4 figures.

Accepted to ML4PS2024 at NeurIPS 2024

Makinen, T. Lucas,Sui, Ce,Wandelt, Benjamin D.,Porqueres, Natalia,Heavens, Alan, 2024, Hybrid Summary Statistics

Documento

Abrir

Compartir

Fuente

Artículos recomendados por ES/IODE IA

Investigation of Heavy Metal Analysis on Medicinal Plants Used for the Treatment of Skin Cancer by Traditional Practitioners in Pretoria
heavy metals medicinal plants skin cancer icp-ms health risk assessment treatment cancer plants 0 metal health medicinal