detalle del documento
IDENTIFICACIÓN

oai:HAL:hal-02570967v3

Tema
Autoencoders Medical questionnaires Data imputation Parkinson’s Disease PPMI Parkinson's disease [INFO.INFO-NE]Computer Science [cs... [STAT.ML]Statistics [stat]/Machine... [INFO.INFO-AI]Computer Science [cs... [SDV.IB]Life Sciences [q-bio]/Bioe...
Autor
Peralta, Maxime Jannin, Pierre Haegelen, Claire Baxter, John, S H
Langue
en
Editor

HAL CCSD;Elsevier

Categoría

tecnologías: informática

Año

2021

fecha de cotización

15/12/2023

Palabras clave
parkinson disease science
Métrico

Resumen

International audience; Medical questionnaires are a valuable source of information but are often difficult to analyse due to both their size and the high possibility of having missing values.

This is a problematic issue in biomedical data science as it may complicate how individual questionnaire data is represented for statistical or machine learning analysis.

In this paper, we propose a deeply-learnt residual autoencoder to simultaneously perform non-linear data imputation and dimensionality reduction.

We present an extensive analysis of the dynamics of the performances of this autoencoder regarding the compression rate and the proportion of missing values.

This method is evaluated on motor and non-motor clinical questionnaires of the Parkinson's Progression Markers Initiative (PPMI) database and consistently outperforms linear coupled imputation and reduction approaches.

Peralta, Maxime,Jannin, Pierre,Haegelen, Claire,Baxter, John, S H, 2021, Data Imputation and Compression For Parkinson's Disease Clinical Questionnaires, HAL CCSD;Elsevier

Documento

Abrir

Compartir

Fuente

Artículos recomendados por ES/IODE IA

Clinical Relevance of Plaque Distribution for Basilar Artery Stenosis
study endovascular imaging wall basilar complications plaque postoperative artery plaques stenosis