Détail du document
Identifiant

oai:arXiv.org:2307.00936

Sujet
Computer Science - Machine Learnin... Computer Science - Artificial Inte...
Auteur
Huang, Yunyou Guan, Xianglong Lu, Xiangjiang Liang, Xiaoshuang Miao, Xiuxia Xie, Jiyue Liu, Wenjing Ma, Li Tang, Suqin Zhang, Zhifei Zhan, Jianfeng
Catégorie

Computer Science

Année

2023

Date de référencement

05/07/2023

Mots clés
alzheimer diagnosis ad abnormal pattern
Métrique

Résumé

Alzheimer's disease (AD) cannot be reversed, but early diagnosis will significantly benefit patients' medical treatment and care.

In recent works, AD diagnosis has the primary assumption that all categories are known a prior -- a closed-set classification problem, which contrasts with the open-set recognition problem.

This assumption hinders the application of the model in natural clinical settings.

Although many open-set recognition technologies have been proposed in other fields, they are challenging to use for AD diagnosis directly since 1) AD is a degenerative disease of the nervous system with similar symptoms at each stage, and it is difficult to distinguish from its pre-state, and 2) diversified strategies for AD diagnosis are challenging to model uniformly.

In this work, inspired by the concerns of clinicians during diagnosis, we propose an open-set recognition model, OpenAPMax, based on the anomaly pattern to address AD diagnosis in real-world settings.

OpenAPMax first obtains the abnormal pattern of each patient relative to each known category through statistics or a literature search, clusters the patients' abnormal pattern, and finally, uses extreme value theory (EVT) to model the distance between each patient's abnormal pattern and the center of their category and modify the classification probability.

We evaluate the performance of the proposed method with recent open-set recognition, where we obtain state-of-the-art results.

;Comment: Alzheimer's Disease, Abnormal Patterns, Open-set Recognition, OpenAPMax

Huang, Yunyou,Guan, Xianglong,Lu, Xiangjiang,Liang, Xiaoshuang,Miao, Xiuxia,Xie, Jiyue,Liu, Wenjing,Ma, Li,Tang, Suqin,Zhang, Zhifei,Zhan, Jianfeng, 2023, OpenAPMax: Abnormal Patterns-based Model for Real-World Alzheimer's Disease Diagnosis

Document

Ouvrir

Partager

Source

Articles recommandés par ES/IODE IA

Hespi: A pipeline for automatically detecting information from hebarium specimen sheets
science recognition institutional detects text-based text pipeline specimen