Détail du document
Identifiant

oai:arXiv.org:2406.18621

Sujet
Computer Science - Sound Computer Science - Artificial Inte... Electrical Engineering and Systems...
Auteur
Rauch, Lukas Huseljic, Denis Wirth, Moritz Decke, Jens Sick, Bernhard Scholz, Christoph
Catégorie

Computer Science

Année

2024

Date de référencement

13/11/2024

Mots clés
learning bioacoustics avian science deep
Métrique

Résumé

Passive acoustic monitoring (PAM) in avian bioacoustics enables cost-effective and extensive data collection with minimal disruption to natural habitats.

Despite advancements in computational avian bioacoustics, deep learning models continue to encounter challenges in adapting to diverse environments in practical PAM scenarios.

This is primarily due to the scarcity of annotations, which requires labor-intensive efforts from human experts.

Active learning (AL) reduces annotation cost and speed ups adaption to diverse scenarios by querying the most informative instances for labeling.

This paper outlines a deep AL approach, introduces key challenges, and conducts a small-scale pilot study.

;Comment: accepted at IAL@ECML-PKDD24

Rauch, Lukas,Huseljic, Denis,Wirth, Moritz,Decke, Jens,Sick, Bernhard,Scholz, Christoph, 2024, Towards Deep Active Learning in Avian Bioacoustics

Document

Ouvrir

Partager

Source

Articles recommandés par ES/IODE IA

Diabetes and obesity: the role of stress in the development of cancer
stress diabetes mellitus obesity cancer non-communicable chronic disease stress diabetes obesity patients cause cancer