Détail du document
Identifiant

oai:arXiv.org:2408.13781

Sujet
Computer Science - Networking and ...
Auteur
Rezazadeh, Farhad Gargari, Amir Ashtari Lagén, Sandra Mangues, Josep Niyato, Dusit Liu, Lingjia
Catégorie

Computer Science

Année

2024

Date de référencement

02/10/2024

Mots clés
generative ns-3
Métrique

Résumé

The move toward Sixth-Generation (6G) networks relies on open interfaces and protocols for seamless interoperability across devices, vendors, and technologies.

In this context, open 6G development involves multiple disciplines and requires advanced simulation approaches for testing.

In this demo paper, we propose a generative simulation approach based on a multi-agent Large Language Model (LLM) and Network Simulator 3 (ns-3), called Generative Open xG Network Simulation (GenOnet), to effectively generate, debug, execute, and interpret simulated Open Fifth-Generation (5G) environments.

The first version of GenOnet application represents a specialized adaptation of the OpenAI GPT models.

It incorporates supplementary tools, agents, 5G standards, and seamless integration with ns-3 simulation capabilities, supporting both C++ variants and Python implementations.

This release complies with the latest Open Radio Access Network (O-RAN) and 3GPP standards.

;Comment: 3 pages, 4 figures

Rezazadeh, Farhad,Gargari, Amir Ashtari,Lagén, Sandra,Mangues, Josep,Niyato, Dusit,Liu, Lingjia, 2024, GenOnet: Generative Open xG Network Simulation with Multi-Agent LLM and ns-3

Document

Ouvrir

Partager

Source

Articles recommandés par ES/IODE IA