Détail du document
Identifiant

oai:arXiv.org:2408.06214

Sujet
Astrophysics - Cosmology and Nonga... Astrophysics - Astrophysics of Gal...
Auteur
Hervías-Caimapo, Carlos Cukierman, Ari J. Diego-Palazuelos, Patricia Huffenberger, Kevin M. Clark, Susan E.
Catégorie

sciences : astrophysique

Année

2024

Date de référencement

21/08/2024

Mots clés
misalignment model astrophysics angle
Métrique

Résumé

We extend the dust-filament-based model presented in Herv\'ias-Caimapo & Huffenberger 2022 to produce parity-violating foreground spectra by manipulating the filament orientations relative to the magnetic field.

We calibrate our model to observations of the misalignment angle using cross-correlations of Planck and HI 21-cm line data, producing a fiducial model that predicts a $\mathcal{D}_{\ell}^{EB}\sim$few $\mu$K$^2$ dust signal at 353 GHz and where $\sim 56$% of filaments have a positive misalignment angle.

The main purpose of this model is to be used as dust with non-zero parity-violating emission in forecasting a measurement of cosmic birefringence by upcoming experiments.

Here, we also use our fiducial model to assess the impact of dust in measurements of the isotropic cosmic birefringence angle $\beta$ with Planck data by measuring the misalignment angle as a function of scale, as well as directly using our model's $\mathcal{D}_{\ell}^{EB}$ prediction as a template.

In both cases, we measure $\beta$ to be consistent within $0.83\sigma$ of the equivalent measurements with Planck data and its derivatives.

;Comment: 30 pages, 17 figures, 5 tables, 3 apendices.

To be submitted to PRD

Hervías-Caimapo, Carlos,Cukierman, Ari J.,Diego-Palazuelos, Patricia,Huffenberger, Kevin M.,Clark, Susan E., 2024, Modeling parity-violating spectra in Galactic dust polarization with filaments and its applications to cosmic birefringence searches

Document

Ouvrir

Partager

Source

Articles recommandés par ES/IODE IA

Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection
detection features detecting computer information generation semantic data objects