Détail du document
Identifiant

oai:HAL:hal-02570967v3

Sujet
Autoencoders Medical questionnaires Data imputation Parkinson’s Disease PPMI Parkinson's disease [INFO.INFO-NE]Computer Science [cs... [STAT.ML]Statistics [stat]/Machine... [INFO.INFO-AI]Computer Science [cs... [SDV.IB]Life Sciences [q-bio]/Bioe...
Auteur
Peralta, Maxime Jannin, Pierre Haegelen, Claire Baxter, John, S H
Langue
en
Editeur

HAL CCSD;Elsevier

Catégorie

technologies : sciences informatique

Année

2021

Date de référencement

15/12/2023

Mots clés
parkinson disease science
Métrique

Résumé

International audience; Medical questionnaires are a valuable source of information but are often difficult to analyse due to both their size and the high possibility of having missing values.

This is a problematic issue in biomedical data science as it may complicate how individual questionnaire data is represented for statistical or machine learning analysis.

In this paper, we propose a deeply-learnt residual autoencoder to simultaneously perform non-linear data imputation and dimensionality reduction.

We present an extensive analysis of the dynamics of the performances of this autoencoder regarding the compression rate and the proportion of missing values.

This method is evaluated on motor and non-motor clinical questionnaires of the Parkinson's Progression Markers Initiative (PPMI) database and consistently outperforms linear coupled imputation and reduction approaches.

Peralta, Maxime,Jannin, Pierre,Haegelen, Claire,Baxter, John, S H, 2021, Data Imputation and Compression For Parkinson's Disease Clinical Questionnaires, HAL CCSD;Elsevier

Document

Ouvrir

Partager

Source

Articles recommandés par ES/IODE IA

Clinical Relevance of Plaque Distribution for Basilar Artery Stenosis
study endovascular imaging wall basilar complications plaque postoperative artery plaques stenosis